Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 133: 112021, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626549

RESUMO

BACKGROUND: Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS: Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS: Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS: Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.

3.
Acta Trop ; 252: 107155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373527

RESUMO

This study aimed to produce linalool loaded zinc oxide nanocomposite (LZNPs) and assess its in vitro and in vivo antileishmanial effects against Leishmania major. LZNPs was produced through the synthesis of an ethanolic solution containing polyvinyl alcohol. The average size of LZNPs was determined to be 105 nm. The findings indicated that LZNPs displayed significant (p < 0.01) antileishmanial effects on promastigotes and amastigotes. Following exposure of promastigotes to LZNPs, there was a notable rise in the percentage of early and late apoptotic cells from 9.0 to 57.2 %. The gene expression levels of iNOS, IFN-γ, and TNF-α in macrophages were upregulated in a dose-dependent approach following exposure to LZNPs. LZNPs alone and in conjunction with glucantime (Glu) resulted in a reduction in the diameter and parasite load of CL lesions in infected mice. Treatment of the CL-infected mice with LZNPs at 25 and 50 mg/kg mainly in combination with Glu-reduced the tissue level of malondialdehyde (MDA), increased both gene and protein expression of the antioxidant enzymes as well as raised the expression level of IFN-γ and IL-12 cytokines, whereas caused a significant reduction in the expression level of IL-4. The present study shows that LZNPs has potent antileishmanial effects and controls CL in a mice model through its antioxidant and immunomodulatory properties. Further investigation, especially in clinical trials, could explore the potential use of this nanocomposite in managing and treating CL.


Assuntos
Monoterpenos Acíclicos , Antiprotozoários , Cicloexanóis , Compostos de Tritil , Óxido de Zinco , Animais , Camundongos , Óxido de Zinco/farmacologia , Antioxidantes/farmacologia , Zinco , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Antimoniato de Meglumina , Camundongos Endogâmicos BALB C
4.
Reprod Sci ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267808

RESUMO

The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing-thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.

5.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241888

RESUMO

Quercetin (QtN) displays low systemic bioavailability caused by poor water solubility and instability. Consequently, it exerts limited anticancer action in vivo. One solution to increase the anticancer efficacy of QtN is the use of appropriate functionalized nanocarriers that preferentially target and deliver the drug to the tumor location. Herein, a direct advanced method was designed to develop water-soluble hyaluronic acid (HA)-QtN-conjugated silver nanoparticles (AgNPs). HA-QtN reduced silver nitrate (AgNO3) while acting as a stabilizing agent to produce AgNPs. Further, HA-QtN#AgNPs served as an anchor for folate/folic acid (FA) conjugated with polyethylene glycol (PEG). The resulting PEG-FA-HA-QtN#AgNPs (further abbreviated as PF/HA-QtN#AgNPs) were characterized both in vitro and ex vivo. Physical characterizations included UV-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), particle size (PS) and zeta potential (ZP) measurements, and biopharmaceutical evaluations. The biopharmaceutical evaluations included analyses of the cytotoxic effects on the HeLa and Caco-2 cancer cell lines using the MTT assay; cellular drug intake into cancer cells using flow cytometry and confocal microscopy; and blood compatibility using an automatic hematology analyzer, a diode array spectrophotometer, and an enzyme-linked immunosorbent assay (ELISA). The prepared hybrid delivery nanosystem was hemocompatible and more oncocytotoxic than the free, pure QtN. Therefore, PF/HA-QtN#AgNPs represent a smart nano-based drug delivery system (NDDS) and could be a promising oncotherapeutic option if the data are validated in vivo.


Assuntos
Produtos Biológicos , Nanopartículas Metálicas , Neoplasias , Humanos , Ácido Hialurônico/química , Quercetina/farmacologia , Nanopartículas Metálicas/química , Células CACO-2 , Prata , Polietilenoglicóis/química , Água , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Materials (Basel) ; 16(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37241347

RESUMO

This work comprehensively studies both the photocatalytic degradation and the adsorption process of Congo red dye on the surface of a mixed-phase copper oxide-graphene heterostructure nanocomposite. Laser-induced pristine graphene and graphene doped with different CuO concentrations were used to study these effects. Raman spectra showed a shift in the D and G bands of the graphene due to incorporating copper phases into the laser-induced graphene. The XRD confirmed that the laser beam was able to reduce the CuO phase to Cu2O and Cu phases, which were embedded into the graphene. The results elucidate incorporating Cu2O molecules and atoms into the graphene lattice. The production of disordered graphene and the mixed phases of oxides and graphene were validated by the Raman spectra. It is noted from the spectra that the D site changed significantly after the addition of doping, which indicates the incorporation of Cu2O in the graphene. The impact of the graphene content was examined with 0.5, 1.0, and 2.0 mL of CuO. The findings of the photocatalysis and adsorption studies showed an improvement in the heterojunction of copper oxide and graphene, but a significant improvement was noticed with the addition of graphene with CuO. The outcomes demonstrated the compound's potential for photocatalytic use in the degradation of Congo red.

7.
Cancers (Basel) ; 15(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831357

RESUMO

BACKGROUND: The findings of earlier investigations of antiapoptotic gene genotypes and allele variants on lymphoma risk are ambiguous. This study aimed to examine the relationship between the mutation in the antiapoptotic genes and lymphoma risk among Saudi patients. METHODS: This case-control study included 205 patients, 100 of whom had lymphoma (cases) and 105 who were healthy volunteers (controls). We used tetra amplification refractory mutation polymerase chain reaction (PCR) to identify antiapoptotic genes such as B-cell lymphoma-2 (BCL2-938 C > A), MCL1-rs9803935 T > G, and survivin (BIRC5-rs17882312 G > C and BIRC5-rs9904341 G > C). Allelic-specific PCR was used to identify alleles such as BIRC5-C, MCL1-G, and BIRC5-G. RESULTS: The dominant inheritance model among cases showed that mutations in all four antiapoptotic genes were more likely to be associated with the risk of lymphoma by the odds of 2.0-, 1.98-, 3.90-, and 3.29-fold, respectively, compared to controls. Apart from the BCL-2-A allele, all three specified alleles were more likely to be associated with lymphoma by the odds of 2.04-, 1.65-, and 2.11-fold, respectively. CONCLUSION: Unlike healthy individuals, lymphoma patients are more likely to have antiapoptotic gene genotypes and allele variants, apart from BCL-2-A alterations. In the future, these findings could be used to classify and identify patients at risk of lymphoma.

8.
Metab Brain Dis ; 38(2): 483-505, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35344129

RESUMO

Mangifera indica L., also known as mango, is a tropical fruit that belongs to the Anacardiaceae family and is prized for its juiciness, unique flavour, and worldwide popularity. The current study aimed to probe into antidepressant power (ADP) of MIS in animals and confirmation of ADP with in silico induced-fit molecular docking. The depression model was prepared by exposing mice to various stressors from 9:00 am to 2:00 pm during 42 days study period. MIS extract and fluoxetine were given daily for 30 min before exposing animals to stressors. ADP was evaluated by various behavioural tests and biochemical analysis. Results showed increased physical activity in mice under behavioural tests, plasma nitrite and malondialdehyde (MDA) levels and monoamine oxidase A (MAO-A) activity decreased dose-dependently in MIS treated mice and superoxide dismutases (SOD) levels increased in treated groups as compared to disease control. With the peculiar behaviour and significant interactions of the functional residues of target proteins with selected ligands along with the best absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, it is concluded that catechin could be the best MAO-A inhibitor at a binding energy of -8.85 kcal/mol, and two hydrogen bonds were generated with Cys406 (A) and Gly443 (A) residues of the active binding site of MAO-A enzyme. While catechin at -6.86 kcal/mol generated three hydrogen bonds with Ala263 (A) and Gly434 (A) residues of the active site of monoamine oxidase B (MAO-B) enzyme and stabilized the best conformation. Therefore, it is highly recommended to test the selected lead-like compound catechin in the laboratory with biological system analysis to confirm its activity as MAO-A and MAO-B inhibitors so it can be declared as one of the novel therapeutic options with anti-depressant activity. Our findings concluded that M. indica seeds could be a significant and alternative anti-depressant therapy.


Assuntos
Catequina , Mangifera , Camundongos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/química , Mangifera/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Catequina/análise , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Sementes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
9.
Metab Brain Dis ; 38(3): 1051-1066, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36437394

RESUMO

Parkinson's disease (PD) is slowly developing neurodegenerative disorder associated with gradual decline in cerebration and laboriousness to perform routine piece of work. PD imposed a social burden on society through higher medical cost and by loss of social productivity in current era. The available treatment options are expensive and associated with serious adverse effect after long term use. Therefore, there is a critical clinical need to develop alternative pharmacotherapies from natural sources to prevent and cure the pathological hall marks of PD with minimal cost. Our study aimed to scrutinize the antiparkinsonian potential of curcuminoids-rich extract and its binary and ternary inclusion complexes. In healthy rats, 1 mg/kg haloperidol daily intraperitoneally, for 3 weeks was used to provoke Parkinsonism like symptoms except control group. Curcuminoids rich extract, binary and ternary inclusion complexes formulations 15-30 mg/kg, L-dopa and carbidopa (100 + 25 mg/kg) were orally administered on each day for 3 weeks. Biochemical, histopathological and RT-qPCR analyses were conducted after neurobehavioral observations. Findings of current study indicated that all curcuminoids formulations markedly mitigated the behavioral abnormalities, recovered the level of antioxidant enzymes, acetylcholinesterase inhibitory activity and neurotransmitters. Histological analysis revealed that curcuminoids supplements stabilized the neuronal loss, pigmentation and Lewy bodies' formation. The mRNA expressions of neuro-inflammatory and specific PD pathological biomarkers were downregulated by treatment with curcuminoids formulations. Therefore, it is suggested that these curcuminoids rich extract, binary and ternary supplements should be considered as promising therapeutic agents in development of modern anti-Parkinson's disease medications.


Assuntos
Diarileptanoides , Doença de Parkinson , Ratos , Animais , Diarileptanoides/uso terapêutico , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Acetilcolinesterase , Modelos Animais de Doenças , Doença de Parkinson/tratamento farmacológico
10.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290588

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with unmet medical need. This investigation consisted of testing a range of ethanolic ethnomedicinal plant extracts (n = 18) traditionally used in the treatment of disorders such as anxiety, delirium, and memory loss. They were then screened for in vitro inhibitory activity against acetylcholinesterase (AChE), butylcholinesterase (BuChE), beta-secretase 1/beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), and antioxidant activities. Plants with potent activities were further characterised using a recently developed in vivo model of AD, Globodera pallida. The ability of phytoextracts to protect this organism against amyloid-beta Aß (1-42) exposure was assessed by measuring chemosensing, survival rate, production of reactive oxygen species (ROS), and antioxidant responses. Extracts (n = 5) from Juglans regia (leaves), Ellettaria cardamomum (seeds), Cinnamomum zeylanicum (bark), Salvia officinalis (leaves/flowers), and Hypericum perforatum (flowers) exerted concentration-dependent inhibitory activities against AChE and BuChE. Three of these plant extracts (i.e., J. regia, E. cardamomum, and S. officinalis) possessed strong concentration-dependent inhibitory activity against BACE1. Furthermore, the five selected medicinal plant extracts not only enhanced significantly (p < 0.05) the nematode's chemosensing, survival rate, and antioxidant responses (i.e., anti-ROS production, mitochondrial reductase activity, oxidized glutathione (GSSG) to reduced glutathione (GSH) ratio), but also greatly restored (p < 0.05) in a concentration-dependent manner the Aß (1-42)-induced deleterious changes in these same parameters. In brief, this investigation highlights plant extracts with strong anti-AD activities which could be trialled as novel therapeutic supplements or undergo further biodiscovery research.

11.
Biomed Res Int ; 2022: 7233997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528154

RESUMO

Objective: The present study was aimed at evaluating the antitumor effects of royal jelly (RJ) obtained from Apis mellifera compared with cyclophosphamide against the Ehrlich solid tumors (EST) in mice. Methods: Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO), nitric oxide (NO), antioxidant enzymes (glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in EST mice treated with RJ (200 and 400 mg/kg orally once a day for 2 weeks). Results: The results showed that treatment of EST-suffering mice with RJ at the doses of 200 and 400 mg/kg causes significant reduction in tumor volume and inhibition rate, body weight, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the EST mice receiving the normal saline; whereas RJ at the doses of 200 and 400 mg/kg/day significantly increased (p < 0.05) the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusion: The findings revealed that oral administration of royal jelly especially at the doses of 200 and 400 mg/kg exhibited promising antitumor effects against EST in mice through induction of apoptosis as well as its antioxidant and anti-inflammatory effects, which suggest it as a novel anticancer agent against tumor; however, additional surveys especially in clinical setting are necessary to approve these findings.


Assuntos
Antioxidantes , Neoplasias , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Abelhas , Peso Corporal , Ácidos Graxos , Camundongos , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , alfa-Fetoproteínas/metabolismo
12.
Nanomaterials (Basel) ; 12(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407153

RESUMO

Background: Using a variety of chemical compounds and biomolecules, researchers have been working on new antidiabetic drugs for many years. Anti-diabetic research is increasingly using nanomaterials because of their unique qualities, such as their tiny size, biocompatibility, and ability to penetrate cell membranes for drug delivery. Using extract of T. couneifolia coated with silver nanoparticles as a model for diabetes mellitus research was one of the goals of this work. Methods: Uv-Vis spectroscopy was used to measure the TAgNPs surface plasmon resonance. FTIR spectroscopy confirmed the attached functional groups, XRD analysis confirmed the size and crystallinity, scanning electron microscopy revealed that the majority of the particles were spherical, and EDX performed the elemental analysis. For 21 days, alloxan-induced diabetic Wistar rats (N = 25, n = 5/group) were administered 10 mg/kg body weight of photosynthesized AgNPs as a standard animal model, while those in the untreated normal control group C, received distilled water as a control, diabetics who were treated with 0.5 mg/kg of body weight of glibenclamide, 10 mg/kg of methanolic T. couneifolia extract, and diabetics who were given 10 mg/kg of body weight of synthetic AgNPs derived from T. couneifolia in the DAgNPs group. At the conclusion of the treatment, lipid, liver and kidney profiles were re-examined to determine whether or not the treatment had been effective (day 21). Oral glucose doses of 2 g/kg of body weight were administered to each group, and blood glucose levels were measured at various intervals (day 21). Fasting glucose levels were measured using a glucometer. Each animal's urine was tested for leukocytes, nitrites, and bilirubin using lab-made prepared assay kits. One-way ANOVA and Dunnett's test were used for statistical analysis. Results: The surface plasmon resonance effect was examined with UV-vis, it showed a sharp peak at 412 nm. X-ray diffraction measurements indicated that the produced nanoparticles were between 15 to 31.44 nm in size. Alloxan-induced diabetic rats were fed AgNPs derived from phytosynthesized AgNPs, compared to diabetic control rats, diabetic rats treated with AgNPs showed a considerable improvement in their dyslipidemia status. Over the course of the days, it also lowered blood glucose levels. A reduction in blood glucose levels, a rise in body weight, and significant improvements in the lipid, liver, and renal profiles were also seen. Conclusions: The present findings revealed that plant mediated silver nanoparticles significantly improved the alloxan induced diabetic changes in various treated rats and might be used for the treatment of diabetes.

13.
Carbohydr Polym ; 286: 119207, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337492

RESUMO

Ion-imprinting methodology was utilized in the fabrication of mercury ion-imprinted sorbent derived from modified chitosan derivatives. The Schiff base ligand was first derived from 4-amino-3-hydroxybenzoic acid and 2-pyridinecarboxaldehyde (HPB) and then incorporated with chitosan via amide bonds. The obtained modified chitosan polymeric ligand (PBCS) was combined with Hg(II) ions to produce the corresponding polymeric complex and the imprinting was then achieved upon the glutaraldehyde cross-linking and eliminating the incorporated Hg(II) ions to finally have the Hg(II) ion-imprinted sorbent material (Hg-PBCS). The materials have been investigated using various techniques such as NMR and FTIR and the obtained sorbent was examined to evaluate its selective affinity to capture the target Hg(II) ions. The developed Hg-PBCS sorbent exhibited a higher tendency toward the targeted Hg(II) ions compared to the control non-imprinted sorbent particle (NI-PBCS) with a maximum capacity of 315 mg/g. Also, the sorbent displayed relatively rapid adsorption kinetics that best correlated with the pseudo-second-order model.

15.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834112

RESUMO

Queen bee acid or 10-hydroxy-2-decenoic acid (10-HDA) is one of the main and unique lipid components (fatty acids) in royal jelly. Previous studies have demonstrated that 10-HDA has various pharmacological and biological activities. The present study aims to evaluate the anti-tumor effects of 10-HDA alone and combined with cyclophosphamide (CP), as an alkylating agent which widely used for the treatment of neoplastic cancers, against the Ehrlich solid tumors (EST) in mice. Methods: A total of 72 female Swiss albino mice were divided into eight groups. EST mice were treated with 10-HDA (2.5 and 5 mg/kg) alone and combined with CP (25 mg/kg) orally once a day for 2 weeks. Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO) and nitric oxide (NO), antioxidant enzymes (e.g. glutathione reductase (GR), glutathione peroxidase (GPx), catalase enzyme (CAT)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in tested mice. Results: the findings exhibited that treatment of EST-suffering mice with 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP significantly (p < 0.001) decreased the tumor volume and inhibition rate, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the mice in the C2 group; while 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP significantly (p < 0.001) improved the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusions: According to the results of the present investigations, 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP showed promising antitumor effects against EST in mice and can be recommended as a new or alternative anticancer agent against tumor; nevertheless, further investigations, particularly in clinical setting, are required to confirm these results.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Ehrlich , Ácidos Graxos Monoinsaturados/farmacologia , Proteínas de Neoplasias/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Ciclofosfamida/química , Ciclofosfamida/farmacologia , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Ácidos Graxos Monoinsaturados/química , Feminino , Camundongos
16.
Microorganisms ; 9(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34683434

RESUMO

This experimental investigation was designed to assess the in vitro and in vivo antileishmanial effects of Z. spina-christi methanolic extract (ZSCME) and also aims to assess some of the antileishmanial mechanisms such as the NO production, apoptosis, and plasma membrane permeability. We assessed the in vitro leishmanicidal effects of ZSCME (10-200 µg/mL) against intracellular amastigote stage of the Leishmania major (MRHO/IR/75/ER) and, then, in vivo examined male BALB/c mice infected by L. major. In addition, the rate of infectivity, Caspase 3 activity, nitric oxide (NO) production, the plasma membrane permeability, and the cytotoxic effects of ZSCME were studied. The primary phytochemical analysis of ZSCME revealed the existence of high amounts of flavonoids, tannins, glycosides, alkaloids, and saponin in this plant. The findings exhibited that ZSCME meaningfully (p < 0.001) reduced the viability of amastigotes of L. major, whereas it prompted the creation and release of NO, apoptosis, and the plasma membrane permeability (p < 0.05) and indicated no cytotoxicity in macrophage cells. The in vivo results also demonstrated that ZSCME significantly decreased the parasite load and the diameter of the lesions in the infected mice. Our results demonstrate the promising in vitro and in vivo antileishmanial effects of ZSCME against of L. major. Although the findings of the present study showed some possible antileishmanial mechanisms of ZSCME, such as stimulating NO production, apoptosis, and increasing plasma membrane permeability, additional investigations are required to confirm these results.

17.
Cells ; 10(9)2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34572130

RESUMO

BACKGROUND: Whole transgenic or non-transgenic organism model systems allow the screening of pharmacological compounds for protective actions in Alzheimer's disease (AD). AIM: In this study, a plant parasitic nematode, Globodera pallida, which assimilates intact peptides from the external environment, was investigated as a new potential non-transgenic model system of AD. Methods: Fresh second-stage juveniles of G. pallida were used to measure their chemosensory, perform immunocytochemistry on their neurological structures, evaluate their survival rate, measure reactive oxygen species, and determine total oxidized glutathione to reduced glutathione ratio (GSSG/GSH) levels, before and after treatment with 100 µM of various amyloid beta (Aß) peptides (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16). Wild-type N2 C. elegans (strain N2) was cultured on Nematode Growth Medium and directly used, as control, for chemosensory assays. RESULTS: We demonstrated that: (i) G. pallida (unlike Caenorhabditis elegans) assimilates amyloid-ß (Aß) peptides which co-localise with its neurological structures; (ii) pre-treatment with various Aß isoforms (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16) impairs G. pallida's chemotaxis to differing extents; (iii) Aß peptides reduced survival, increased the production of ROS, and increased GSSG/GSH levels in this model; (iv) this unique model can distinguish differences between different treatment concentrations, durations, and modalities, displaying good sensitivity; (v) clinically approved neuroprotective agents were effective in protecting G. pallida from Aß (1-42) exposure. Taken together, the data indicate that G. pallida is an interesting in vivo model with strong potential for discovery of novel bioactive compounds with anti-AD activity.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais Geneticamente Modificados/fisiologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tylenchoidea/fisiologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Quimiotaxia , Tylenchoidea/efeitos dos fármacos
18.
Biomed Pharmacother ; 143: 112151, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507115

RESUMO

Wound healing is a public health concern. Licorice gained a great attention for its antioxidant and anti-inflammatory properties which expand its valuable effects as a herbal medicine. In this study, we pointed out to the wound healing potential and the mechanism by which licorice alcoholic extract can modulate cutaneous wound healing through immune, antioxidant, histopathological, immunohistochemical (IHC) and molecular studies. 24 Wister rats were assigned into 3 groups (n = 8 each); control group, topical and oral supplied groups. Licorice extract administration significantly increased total and differential leucocyte counts, phagocytic activity of neutrophils, antioxidant biomarkers as superoxide dismutase (SOD), glutathione peroxidase activities (GPx) and reduced glutathione (GSH) content with a notable reduction in oxidative stress marker malondialdehyde (MDA). Moreover, histopathological findings detected complete re-epithelialization with increasing collagen synthesis while IHC results revealed a significant enhancement in the expression of α-SMA, PDGFR-α, FGFR1 and Cytokeratin 14 in licorice treated groups compared with the control group. Licorice extract supplementation accelerated wound healing by increasing angiogenesis and collagen deposition through up-regulation of bFGF, VEGF and TGF-ß gene expression levels compared with the control group. UPLC-PDA-MS/MS aided to authenticate the studied Glycyrrihza species and recognized 101 potential constituents that may be responsible for licorice-exhibited potentials. Based on our observations we concluded that licorice enhanced cutaneous wound healing via its free radical-scavenging potential, potent antioxidant activities, and anti-inflammatory actions. Therefore, licorice could be used as a potential alternative therapy for wound injury which could overcome the associated limitations of modern therapeutic products.


Assuntos
Indutores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Glycyrrhiza , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/tratamento farmacológico , Indutores da Angiogênese/isolamento & purificação , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glycyrrhiza/química , Mediadores da Inflamação/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Pele/lesões , Pele/metabolismo , Pele/patologia , Ferimentos Penetrantes/genética , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia
19.
Saudi J Biol Sci ; 28(9): 5391-5402, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466120

RESUMO

BACKGROUND: However, broad adoption of herbal remedies for giardiasis is at present hampered by uncertain findings of investigation not always sufficiently powered. This study was aimed at systematically reviewing the existing literature in herbal medicines to treat giardiasis. METHODS: This review was carried out 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. The search was performed in five databases which are Scopus, PubMed, Web of Science, EMBASE, and Google Scholar without time limitation for all published articles (in vitro, in vivo, and clinical studies). The searched words and terms were: "Giardia", "giardiasis", "extract", "essential oil", "herbal medicines", "anti-Giardia", "In vitro", "In vivo", "clinical trial" etc. RESULTS: Out of 1585 papers, 40 papers including 28 in vitro (70.0%), 7 in vivo (17.5%), 2 in vitro/ in vivo (5.0%), and 3 clinical trials (7.5%) up to 2020, met the inclusion criteria for discussion in this systematic review. The most widely used medicinal plants against Giardia infection belong to the family Lamiaceae (30.0%) followed by Asteraceae (13.5%), Apiaceae (10.5%). The most common parts used in the studies were aerial parts (45.0%) followed by leaves (27.4%) and seeds (7.5%). The aqueous extract (30.0%), essential oil (25.4%) and hydroalcholic and methanolic (10.5%) were considered as the desired approaches of herbal extraction, respectively. CONCLUSION: The current review showed that the plant-based anti-Giardia agents are very promising as an alternative and complementary resource for treating giardiasis since had low significant toxicity. However, more studies are required to elucidate this conclusion, especially in clinical systems.

20.
Mar Drugs ; 19(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564146

RESUMO

Marine algae are rich in bioactive nutraceuticals (e.g., carbohydrates, proteins, minerals, fatty acids, antioxidants, and pigments). Biotic (e.g., plants, microorganisms) and abiotic factors (e.g., temperature, pH, salinity, light intensity) contribute to the production of primary and secondary metabolites by algae. Easy, profitable, and sustainable recovery methods include novel solid-liquid and liquid-liquid extraction techniques (e.g., supercritical, high pressure, microwave, ultrasound, enzymatic). The spectacular findings of algal-mediated synthesis of nanotheranostics has attracted further interest because of the availability of microalgae-based natural bioactive therapeutic compounds and the cost-effective commercialization of stable microalgal drugs. Algal extracts can serve as stabilizing/capping and reducing agents for the synthesis of thermodynamically stable nanoparticles (NPs). Different types of nanotherapeutics have been synthesized using physical, chemical, and biological methods. Marine algae are a fascinating source of lead theranostics compounds, and the development of nanotheranostics has been linked to enhanced drug efficacy and safety. Indeed, algae are remarkable nanobiofactories, and their pragmatic properties reside in their (i) ease of handling; (ii) capacity to absorb/accumulate inorganic metallic ions; (iii) cost-effectiveness; and (iv) capacity of eco-friendly, rapid, and healthier synthesis of NPs. Preclinical and clinical trials shall enable to really define effective algal-based nanotherapies. This review aims to provide an overview of the main algal compounds that are nutraceuticals and that can be extracted and purified for nanotheranostic purposes.


Assuntos
Produtos Biológicos/metabolismo , Clorófitas/metabolismo , Rodófitas/metabolismo , Alga Marinha/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Humanos , Nanomedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...